本文将从以下三个方面先容如何制作自己的数据集
- 数据标注
- 数据扩增
- 将数据转化为COCO的json格式
- 参考资料
一、数据标注
在深度学习的目标检测使掷中,起首要使用练习集举行模型练习。练习的数据集好坏决定了使命的上限。下面先容两种常用的图像目标检测标注工具:Labelme和LabelImg。
(1)Labelme
Labelme实用于图像分割使命和目标检测使命的数据集制作,它来自该项目:https://github.com/wkentaro/labelme 。
按照项目中的教程安装完毕后,应用界面如下图所示:
它可以大概提供多边形、矩形、圆形、直线和点的图像标注,并将效果生存为 JSON 文件。
(2)LabelImg
LabelImg实用于目标检测使命的数据集制作。它来自该项目:https://github.com/tzutalin/labelImg
应用界面如下图所示:
它可以大概提供矩形的图像标注,并将效果生存为txt(YOLO)或xml(PascalVOC)格式。如果须要修改标签的类别内容,则在主目录data文件夹中的predefined_classes.txt文件中修改。
我使用的就是这一个标注软件,标注效果生存为xml格式,后续还须要举行标注格式的转换。
操作快捷键:
Ctrl + u 加载目录中的全部图像,鼠标点击Open dir同功能
Ctrl + r 更改默认解释目标目录(xml文件生存的地址)
Ctrl + s 生存
Ctrl + d 复制当前标签和矩形框
space 将当前图像标记为已验证
w 创建一个矩形框
d 下一张图片
a 上一张图片
del 删除选定的矩形框
Ctrl++ 放大
Ctrl-- 缩小
↑→↓← 键盘箭头移动选定的矩形框
二、数据扩增
在某些场景下的目标检测中,样本数目较小,导致检测的效果比力差,这时就须要举行数据扩增。本文先容常用的6类数据扩增方式,包罗裁剪、平移、改变亮度、加入噪声、旋转角度以及镜像。
思量到篇幅标题,将这一部分单列出来,详细请参考本篇博客:https://www.cnblogs.com/lky-learning/p/11653861.html
三、将数据转换至COCO的json格式
起首让我们明确一下几种格式,参考自【点此处】:
3.1 csv
csv/
labels.csv
images/
image1.jpg
image2.jpg
...
labels.csv 的形式:
/path/to/image,xmin,ymin,xmax,ymax,label
比方:
/mfs/dataset/face/image1.jpg,450,154,754,341,face
/mfs/dataset/face/image2.jpg,143,154,344,341,face
3.2 voc
标准的voc数据格式如下:
VOC2007/
Annotations/
0d4c5e4f-fc3c-4d5a-906c-105.xml
0ddfc5aea-fcdac-421-92dad-144/xml
...
ImageSets/
Main/
train.txt
test.txt
val.txt
trainval.txt
JPEGImages/
0d4c5e4f-fc3c-4d5a-906c-105.jpg
0ddfc5aea-fcdac-421-92dad-144.jpg
...
3.3 COCO
coco/
annotations/
instances_train2017.json
instances_val2017.json
images/
train2017/
0d4c5e4f-fc3c-4d5a-906c-105.jpg
...
val2017
0ddfc5aea-fcdac-421-92dad-144.jpg
...
Json file 格式: (imageData那一块太长了,不展示了)
- {
- "version": "3.6.16",
- "flags": {},
- "shapes": [
- {
- "label": "helmet",
- "line_color": null,
- "fill_color": null,
- "points": [
- [
- 131,
- 269
- ],
- [
- 388,
- 457
- ]
- ],
- "shape_type": "rectangle"
- }
- ],
- "lineColor": [
- 0,
- 255,
- 0,
- 128
- ],
- "fillColor": [
- 255,
- 0,
- 0,
- 128
- ],
- "imagePath": "004ffe6f-c3e2-3602-84a1-ecd5f437b113.jpg",
- "imageData": "" # too long ,so not show here
- "imageHeight": 1080,
- "imageWidth": 1920
- }
复制代码
在上一节中提到,经过标注后的效果生存为xml格式,我们起首要把这些xml标注文件整合成一个csv文件。
整合代码如下:
- import os
- import glob
- import pandas as pd
- import xml.etree.ElementTree as ET
- ## xml文件的路径
- os.chdir('./data/annotations/scratches')
- path = 'C:/Users/Admin/Desktop/data/annotations/scratches' # 绝对路径
- img_path = 'C:/Users/Admin/Desktop/data/images'
- def xml_to_csv(path):
- xml_list = []
- for xml_file in glob.glob(path + '/*.xml'): #返回全部匹配的文件路径列表。
- tree = ET.parse(xml_file)
- root = tree.getroot()
- for member in root.findall('object'):
- # value = (root.find('filename').text,
- # int(root.find('size')[0].text),
- # int(root.find('size')[1].text),
- # member[0].text,
- # int(member[4][0].text),
- # int(member[4][1].text),
- # int(member[4][2].text),
- # int(member[4][3].text)
- # )
- value = (img_path +'/' + root.find('filename').text,
- int(member[4][0].text),
- int(member[4][1].text),
- int(member[4][2].text),
- int(member[4][3].text),
- member[0].text
- )
- xml_list.append(value)
- #column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
- column_name = ['filename', 'xmin', 'ymin', 'xmax', 'ymax', 'class']
- xml_df = pd.DataFrame(xml_list, columns=column_name)
- return xml_df
- if __name__ == '__main__':
- image_path = path
- xml_df = xml_to_csv(image_path)
- ## 修改文件名称
- xml_df.to_csv('scratches.csv', index=None)
- print('Successfully converted xml to csv.')
复制代码
当显示 Successfully converted xml to csv 后,我们就得到了整理后的标记文件。
在有些模型下,有了图像数据和csv格式的标注文件后,就可以举行练习了。但是在YOLOv3中,标记文件的类型为COCO的json格式,因此我们还得将其转换至json格式。
转换代码:
- import os
- import json
- import numpy as np
- import pandas as pd
- import glob
- import cv2
- import shutil
- from IPython import embed
- from sklearn.model_selection import train_test_split
- np.random.seed(41)
- # 0为配景
- classname_to_id = {"scratches": 1,"inclusion": 2}
- class Csv2CoCo:
- def __init__(self,image_dir,total_annos):
- self.images = []
- self.annotations = []
- self.categories = []
- self.img_id = 0
- self.ann_id = 0
- self.image_dir = image_dir
- self.total_annos = total_annos
- def save_coco_json(self, instance, save_path):
- json.dump(instance, open(save_path, 'w'), ensure_ascii=False, indent=2) # indent=2 更加美观显示
- # 由txt文件构建COCO
- def to_coco(self, keys):
- self._init_categories()
- for key in keys:
- self.images.append(self._image(key))
- shapes = self.total_annos[key]
- for shape in shapes:
- bboxi = []
- for cor in shape[:-1]:
- bboxi.append(int(cor))
- label = shape[-1]
- annotation = self._annotation(bboxi,label)
- self.annotations.append(annotation)
- self.ann_id += 1
- self.img_id += 1
- instance = {}
- instance['info'] = 'spytensor created'
- instance['license'] = ['license']
- instance['images'] = self.images
- instance['annotations'] = self.annotations
- instance['categories'] = self.categories
- return instance
- # 构建类别
- def _init_categories(self):
- for k, v in classname_to_id.items():
- category = {}
- category['id'] = v
- category['name'] = k
- self.categories.append(category)
- # 构建COCO的image字段
- def _image(self, path):
- image = {}
- img = cv2.imread(self.image_dir + path)
- image['height'] = img.shape[0]
- image['width'] = img.shape[1]
- image['id'] = self.img_id
- image['file_name'] = path
- return image
- # 构建COCO的annotation字段
- def _annotation(self, shape,label):
- # label = shape[-1]
- points = shape[:4]
- annotation = {}
- annotation['id'] = self.ann_id
- annotation['image_id'] = self.img_id
- annotation['category_id'] = int(classname_to_id[label])
- annotation['segmentation'] = self._get_seg(points)
- annotation['bbox'] = self._get_box(points)
- annotation['iscrowd'] = 0
- annotation['area'] = 1.0
- return annotation
- # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式
- def _get_box(self, points):
- min_x = points[0]
- min_y = points[1]
- max_x = points[2]
- max_y = points[3]
- return [min_x, min_y, max_x - min_x, max_y - min_y]
- # segmentation
- def _get_seg(self, points):
- min_x = points[0]
- min_y = points[1]
- max_x = points[2]
- max_y = points[3]
- h = max_y - min_y
- w = max_x - min_x
- a = []
- a.append([min_x,min_y, min_x,min_y+0.5*h, min_x,max_y, min_x+0.5*w,max_y, max_x,max_y, max_x,max_y-0.5*h, max_x,min_y, max_x-0.5*w,min_y])
- return a
-
- if __name__ == '__main__':
-
- ## 修改目录
- csv_file = "data/annotations/scratches/scratches.csv"
- image_dir = "data/images/"
- saved_coco_path = "./"
- # 整合csv格式标注文件
- total_csv_annotations = {}
- annotations = pd.read_csv(csv_file,header=None).values
- for annotation in annotations:
- key = annotation[0].split(os.sep)[-1]
- value = np.array([annotation[1:]])
- if key in total_csv_annotations.keys():
- total_csv_annotations[key] = np.concatenate((total_csv_annotations[key],value),axis=0)
- else:
- total_csv_annotations[key] = value
- # 按照键值划分数据
- total_keys = list(total_csv_annotations.keys())
- train_keys, val_keys = train_test_split(total_keys, test_size=0.2)
- print("train_n:", len(train_keys), 'val_n:', len(val_keys))
- ## 创建必须的文件夹
- if not os.path.exists('%ssteel/annotations/'%saved_coco_path):
- os.makedirs('%ssteel/annotations/'%saved_coco_path)
- if not os.path.exists('%ssteel/images/train/'%saved_coco_path):
- os.makedirs('%ssteel/images/train/'%saved_coco_path)
- if not os.path.exists('%ssteel/images/val/'%saved_coco_path):
- os.makedirs('%ssteel/images/val/'%saved_coco_path)
- ## 把练习集转化为COCO的json格式
- l2c_train = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)
- train_instance = l2c_train.to_coco(train_keys)
- l2c_train.save_coco_json(train_instance, '%ssteel/annotations/instances_train.json'%saved_coco_path)
- for file in train_keys:
- shutil.copy(image_dir+file,"%ssteel/images/train/"%saved_coco_path)
- for file in val_keys:
- shutil.copy(image_dir+file,"%ssteel/images/val/"%saved_coco_path)
- ## 把验证集转化为COCO的json格式
- l2c_val = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)
- val_instance = l2c_val.to_coco(val_keys)
- l2c_val.save_coco_json(val_instance, '%ssteel/annotations/instances_val.json'%saved_coco_path)
复制代码
至此,我们的数据预处理惩罚工作就做好了
四、参考资料
- https://blog.csdn.net/sty945/article/details/79387054
- https://blog.csdn.net/saltriver/article/details/79680189
- https://www.ctolib.com/topics-44419.html
- https://www.zhihu.com/question/20666664
- https://github.com/spytensor/prepare_detection_dataset#22-voc
- https://blog.csdn.net/chaipp0607/article/details/79036312
来源:https://www.cnblogs.com/lky-learning/p/11640180.html |